P-selectin Inhibitors for Controlling Inflammation

From the Laboratories of
Richard Cummings, Ph.D.
Emory School of Medicine, Biochemistry

Elliot Chaikof, M.D., Ph.D.
Beth Israel Deaconess Medical Center

Presented by Cory Acuff, Ph.D.
Sr. Licensing Associate
Office of Technology Transfer
Emory University
Atlanta, GA
Therapeutic Opportunity in Inflammation

Inflammation Associated Diseases
• Bacterial/viral infection
• Traumatic/Ischemic Injury
• Cancer
• Autoimmune
• Genetic (Sickle Cell)

Current Therapies that Fight Inflammation
• NSAIDS
• Cortiosteroids
• Immune System Inhibiting Antibodies

Remaining Unmet Need
Molecules that can be administered over weeks/months without shutting down the immune system or other adverse affects
P-selectin Mediates “Cellular” Response to Injury
Peptide Mimetic of PSGL-1

- Small functional peptide
- More chemically stable
- Appropriate glycosylation
- Binds as well as natural ligand
In vivo Inhibition of P-selectin

GSnP-6 reduced leukocyte sticking to blood vessel wall
Current P-Selectin Inhibitors

<table>
<thead>
<tr>
<th>Molecule</th>
<th>IC_{50}</th>
<th>Indication</th>
<th>Molecule Type</th>
<th>Binding Pocket</th>
</tr>
</thead>
<tbody>
<tr>
<td>GsnP-6</td>
<td>22 nM</td>
<td>Multiple Inflammatory Diseases</td>
<td>Peptide</td>
<td>SO3, Sugar</td>
</tr>
<tr>
<td>GMI 1070</td>
<td>423 μM</td>
<td>Sickle Cell Disease, Cancer Metastasis</td>
<td>Glycomimetic</td>
<td>Sugar</td>
</tr>
<tr>
<td>Bimosiamose</td>
<td>70 μM</td>
<td>COPD, Psoriasis</td>
<td>Glycomimetic</td>
<td>Sugar</td>
</tr>
<tr>
<td>PSI-421</td>
<td>250 μM</td>
<td>Deep Vein Thrombosis</td>
<td>Small Molecule</td>
<td>Sugar</td>
</tr>
<tr>
<td>SelG1*</td>
<td></td>
<td>Sickle Cell Disease</td>
<td>Antibody</td>
<td>?</td>
</tr>
</tbody>
</table>
Summary

• Validated biological target
• Blocks early “cellular” stage of inflammatory process
• nM potency
• IP (pending provisional application) on composition, method of use and methods of synthesis