Whole Body PET/CT Imaging of HIV Replication

Francois Villinger, D.V.M., Ph.D.
Emory School of Medicine, Pathology and Laboratory Medicine

Philip Santangelo, Ph.D.
Wallace H. Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology and Emory University

Presented by Cory Acuff, Ph.D.
Sr. Licensing Associate
Office of Technology Transfer
Emory University
Atlanta, GA
Why PET/CT Imaging?

1st time to non-invasively detect HIV infection and pinpoint viral replication

• Earlier viral replication detection

• Identifies where infection is actually occurring

• Monitor virus control during HAART (Highly Active Antiretroviral Therapy)
Radiolabeled Ab or F(ab) specific for viral protein expressed on cell surface

Targeting viral protein expressed on infected cell

- Specific for viral protein
- Signal is proportional to virus protein levels
Acute SIV Infection in the Rhesus macaque

A – SIV+ animal with anti-SIB mAb
B – SIV+ animal with anti-SIB mAb
C – SIV- animal with anti-SIB mAb
D – SIV- with irrelevant Ab
Chronic SIV Infection in the Rhesus macaque

Non-progressing rhesus macaques infected with SIVmac239 for 2-6 years controlling viremia below 50-100 SIV RNA copies/ml plasma
HIV Imaging Applications in the Clinic

2M people living with HIV in the US and Western Europe

- Acute HIV infection detection
- HAART and vaccine efficacy monitoring
- Viral sanctuary identification
- New drug/vaccine testing
Exciting Emerging Technology in Georgia

- Viral DNA is integrated into the host cell DNA requiring host cell death to eliminate the virus.

- ^{64}Cu labeled antibodies are being tested as radiotherapeutics against cancer.

When given in combination with HAART, this technology has the potential to eliminate the HIV viral sanctuaries.